3.9.23 \(\int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx\) [823]

3.9.23.1 Optimal result
3.9.23.2 Mathematica [C] (verified)
3.9.23.3 Rubi [A] (warning: unable to verify)
3.9.23.4 Maple [A] (verified)
3.9.23.5 Fricas [B] (verification not implemented)
3.9.23.6 Sympy [F]
3.9.23.7 Maxima [A] (verification not implemented)
3.9.23.8 Giac [F]
3.9.23.9 Mupad [F(-1)]

3.9.23.1 Optimal result

Integrand size = 23, antiderivative size = 232 \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx=\frac {(a+b) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a+b) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {2 \sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\left (a^2+b^2\right ) d}+\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d} \]

output
-1/2*(a+b)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/2*(a+ 
b)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+1/4*(a-b)*ln(1+c 
ot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/4*(a-b)*ln(1+cot 
(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+2*arctan(a^(1/2)*cot 
(d*x+c)^(1/2)/b^(1/2))*a^(1/2)*b^(1/2)/(a^2+b^2)/d
 
3.9.23.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.16 (sec) , antiderivative size = 204, normalized size of antiderivative = 0.88 \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx=\frac {6 \sqrt {2} a \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-6 \sqrt {2} a \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+24 \sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )-8 b \cot ^{\frac {3}{2}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\cot ^2(c+d x)\right )+3 \sqrt {2} a \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-3 \sqrt {2} a \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{12 \left (a^2+b^2\right ) d} \]

input
Integrate[1/(Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])),x]
 
output
(6*Sqrt[2]*a*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 6*Sqrt[2]*a*ArcTan[1 
 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + 24*Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[a]*Sqrt[C 
ot[c + d*x]])/Sqrt[b]] - 8*b*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 
7/4, -Cot[c + d*x]^2] + 3*Sqrt[2]*a*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + C 
ot[c + d*x]] - 3*Sqrt[2]*a*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d* 
x]])/(12*(a^2 + b^2)*d)
 
3.9.23.3 Rubi [A] (warning: unable to verify)

Time = 0.94 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.85, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.783, Rules used = {3042, 4156, 3042, 4055, 3042, 4017, 25, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))}dx\)

\(\Big \downarrow \) 4156

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)}}{a \cot (c+d x)+b}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}{b-a \tan \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4055

\(\displaystyle \frac {\int \frac {a+b \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}-\frac {a b \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a-b \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2+b^2}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int -\frac {a+b \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \int \frac {a+b \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {a b \int \frac {1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}d(-\cot (c+d x))}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {2 a b \int \frac {1}{a \cot ^2(c+d x)+b}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}+\frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 \left (-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a-b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}-\frac {2 \sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {a} \cot (c+d x)}{\sqrt {b}}\right )}{d \left (a^2+b^2\right )}\)

input
Int[1/(Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])),x]
 
output
(-2*Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[a]*Cot[c + d*x])/Sqrt[b]])/((a^2 + b^2)*d 
) + (2*(-1/2*((a + b)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + 
 ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2])) - ((a - b)*(-1/2*Log[1 - 
 Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt 
[Cot[c + d*x]] + Cot[c + d*x]]/(2*Sqrt[2])))/2))/((a^2 + b^2)*d)
 

3.9.23.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4055
Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[1/(c^2 + d^2)   Int[Simp[a*c + b*d + (b*c - 
 a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Simp[d*((b*c - a* 
d)/(c^2 + d^2))   Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d 
*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && N 
eQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4156
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Cot[e + f*x])^(m - n*p 
)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 
3.9.23.4 Maple [A] (verified)

Time = 1.60 (sec) , antiderivative size = 225, normalized size of antiderivative = 0.97

method result size
derivativedivides \(-\frac {\frac {\frac {a \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )}{1+\cot \left (d x +c \right )-\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )\right )\right )}{4}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )}{1+\cot \left (d x +c \right )+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )\right )\right )}{4}}{a^{2}+b^{2}}-\frac {2 a b \arctan \left (\frac {a \left (\sqrt {\cot }\left (d x +c \right )\right )}{\sqrt {a b}}\right )}{\left (a^{2}+b^{2}\right ) \sqrt {a b}}}{d}\) \(225\)
default \(-\frac {\frac {\frac {a \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )}{1+\cot \left (d x +c \right )-\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )\right )\right )}{4}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {1+\cot \left (d x +c \right )-\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )}{1+\cot \left (d x +c \right )+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\cot }\left (d x +c \right )\right )\right )\right )}{4}}{a^{2}+b^{2}}-\frac {2 a b \arctan \left (\frac {a \left (\sqrt {\cot }\left (d x +c \right )\right )}{\sqrt {a b}}\right )}{\left (a^{2}+b^{2}\right ) \sqrt {a b}}}{d}\) \(225\)

input
int(1/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x,method=_RETURNVERBOSE)
 
output
-1/d*(2/(a^2+b^2)*(1/8*a*2^(1/2)*(ln((1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2 
))/(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2)))+2*arctan(1+2^(1/2)*cot(d*x+c)^ 
(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2)))+1/8*b*2^(1/2)*(ln((1+cot(d*x 
+c)-2^(1/2)*cot(d*x+c)^(1/2))/(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2)))+2*a 
rctan(1+2^(1/2)*cot(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))))- 
2*a*b/(a^2+b^2)/(a*b)^(1/2)*arctan(a*cot(d*x+c)^(1/2)/(a*b)^(1/2)))
 
3.9.23.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1350 vs. \(2 (194) = 388\).

Time = 0.30 (sec) , antiderivative size = 2726, normalized size of antiderivative = 11.75 \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx=\text {Too large to display} \]

input
integrate(1/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")
 
output
[1/2*((a^2 + b^2)*d*sqrt(-((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2* 
b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + 2*a*b) 
/((a^4 + 2*a^2*b^2 + b^4)*d^2))*log(((a^5 + 2*a^3*b^2 + a*b^4)*d^3*sqrt(-( 
a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^ 
4)) - (a^2*b - b^3)*d)*sqrt(-((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a 
^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + 2*a 
*b)/((a^4 + 2*a^2*b^2 + b^4)*d^2)) - (a^2 - b^2)*sqrt(tan(d*x + c))) - (a^ 
2 + b^2)*d*sqrt(-((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4 
)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + 2*a*b)/((a^4 + 
2*a^2*b^2 + b^4)*d^2))*log(-((a^5 + 2*a^3*b^2 + a*b^4)*d^3*sqrt(-(a^4 - 2* 
a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - (a 
^2*b - b^3)*d)*sqrt(-((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2*b^2 + 
 b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + 2*a*b)/((a^ 
4 + 2*a^2*b^2 + b^4)*d^2)) - (a^2 - b^2)*sqrt(tan(d*x + c))) - (a^2 + b^2) 
*d*sqrt(((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/((a^8 + 
 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - 2*a*b)/((a^4 + 2*a^2*b^2 
 + b^4)*d^2))*log(((a^5 + 2*a^3*b^2 + a*b^4)*d^3*sqrt(-(a^4 - 2*a^2*b^2 + 
b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + (a^2*b - b^3 
)*d)*sqrt(((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/((a^8 
 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - 2*a*b)/((a^4 + 2*a^...
 
3.9.23.6 Sympy [F]

\[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx=\int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right ) \sqrt {\cot {\left (c + d x \right )}}}\, dx \]

input
integrate(1/cot(d*x+c)**(1/2)/(a+b*tan(d*x+c)),x)
 
output
Integral(1/((a + b*tan(c + d*x))*sqrt(cot(c + d*x))), x)
 
3.9.23.7 Maxima [A] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.75 \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx=\frac {\frac {8 \, a b \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{2} + b^{2}\right )} \sqrt {a b}} - \frac {2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (a - b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (a - b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{2} + b^{2}}}{4 \, d} \]

input
integrate(1/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")
 
output
1/4*(8*a*b*arctan(a/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^2 + b^2)*sqrt(a*b) 
) - (2*sqrt(2)*(a + b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c))) 
) + 2*sqrt(2)*(a + b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c))) 
) + sqrt(2)*(a - b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - 
 sqrt(2)*(a - b)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a 
^2 + b^2))/d
 
3.9.23.8 Giac [F]

\[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx=\int { \frac {1}{{\left (b \tan \left (d x + c\right ) + a\right )} \sqrt {\cot \left (d x + c\right )}} \,d x } \]

input
integrate(1/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="giac")
 
output
integrate(1/((b*tan(d*x + c) + a)*sqrt(cot(d*x + c))), x)
 
3.9.23.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cot (c+d x)} (a+b \tan (c+d x))} \, dx=\int \frac {1}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )} \,d x \]

input
int(1/(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))),x)
 
output
int(1/(cot(c + d*x)^(1/2)*(a + b*tan(c + d*x))), x)